[ | E-mail | Share ]
Contact: Marjorie Montemayor-Quellenberg
mmontemayor-quellenberg@partners.org
617-534-2208
Brigham and Women's Hospital
Bioengineers create rubber-like material bearing micropatterns for stronger, more elastic hearts
Boston, MA A team of bioengineers at Brigham and Women's Hospital (BWH) is the first to report creating artificial heart tissue that closely mimics the functions of natural heart tissue through the use of human-based materials. Their work will advance how clinicians treat the damaging effects caused by heart disease, the leading cause of death in the United States.
"Scientists and clinicians alike are eager for new approaches to creating artificial heart tissues that resemble the native tissues as much as possible, in terms of physical properties and function," said Nasim Annabi, PhD, BWH Renal Division, first study author. "Current biomaterials used to repair hearts after a heart attack and other cardiovascular events lack suitable functionality and strength. We are introducing an alternative that has the mechanical properties and functions of native heart tissue."
The study was published online on April 26, 2013 in Advanced Functional Materials.
The researchers created MeTro gelan advanced rubber-like material made from tropoelastin, the protein in human tissues that makes them elastic. The gel was then combined with microfabrication techniques to generate gels containing well-defined micropatterns for high elasticity.
The researchers then used these highly elastic micropatterned gels to create heart tissue that contained beating heart muscle cells.
"The micropatterned gel provides elastic mechanical support of natural heart muscle tissue as demonstrated by its ability to promote attachment, spreading, alignment, function and communication of heart muscle cells," said Annabi.
The researchers state that MeTro gel will provide a model for future studies on how heart cells behave. Moreover, the work lays the foundation for creating more elaborate 3D versions of heart tissue that will contain vascular networks.
"This can be achieved by assembling tandem layers of micropatterned MeTro gels seeded with heart muscles cells in different layers," said Ali Khademhosseini, PhD, BWH Division of Biomedical Engineering, co-senior study author. "As we continue to move forward with finding better ways to mend a broken heart, we hope the biomaterials we engineer will allow us to successfully address the limitations of current artificial tissues."
###
This research was supported by the National Institutes of Health (HL092836, DE019024, EB012597, AR057837, DE021468, HL099073, EB008392); National Health and Medical Research Council; CRC for Polymers; BHP-Billiton Fulbright Scholarship; National Science Foundation; Office of Naval Research Young National Investigator Award; Presidential Early Career Award for Scientists and Engineers; Australian Research Council; and Australian Defense Health Foundation and National Health and Medical Research Council.
Anthony Weiss, PhD, University of Sydney, co-senior study author is scientific founder of Elastagen Pty Ltd.
Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 3.5 million annual patient visits, is the largest birthing center in New England and employs more than 15,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, involving nearly 1,000 physician-investigators and renowned biomedical scientists and faculty supported by nearly $625 million in funding. BWH continually pushes the boundaries of medicine, including building on its legacy in organ transplantation by performing the first face transplants in the U.S. in 2011. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies, OurGenes and the Women's Health Initiative. For more information and resources, please visit BWH's online newsroom.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Marjorie Montemayor-Quellenberg
mmontemayor-quellenberg@partners.org
617-534-2208
Brigham and Women's Hospital
Bioengineers create rubber-like material bearing micropatterns for stronger, more elastic hearts
Boston, MA A team of bioengineers at Brigham and Women's Hospital (BWH) is the first to report creating artificial heart tissue that closely mimics the functions of natural heart tissue through the use of human-based materials. Their work will advance how clinicians treat the damaging effects caused by heart disease, the leading cause of death in the United States.
"Scientists and clinicians alike are eager for new approaches to creating artificial heart tissues that resemble the native tissues as much as possible, in terms of physical properties and function," said Nasim Annabi, PhD, BWH Renal Division, first study author. "Current biomaterials used to repair hearts after a heart attack and other cardiovascular events lack suitable functionality and strength. We are introducing an alternative that has the mechanical properties and functions of native heart tissue."
The study was published online on April 26, 2013 in Advanced Functional Materials.
The researchers created MeTro gelan advanced rubber-like material made from tropoelastin, the protein in human tissues that makes them elastic. The gel was then combined with microfabrication techniques to generate gels containing well-defined micropatterns for high elasticity.
The researchers then used these highly elastic micropatterned gels to create heart tissue that contained beating heart muscle cells.
"The micropatterned gel provides elastic mechanical support of natural heart muscle tissue as demonstrated by its ability to promote attachment, spreading, alignment, function and communication of heart muscle cells," said Annabi.
The researchers state that MeTro gel will provide a model for future studies on how heart cells behave. Moreover, the work lays the foundation for creating more elaborate 3D versions of heart tissue that will contain vascular networks.
"This can be achieved by assembling tandem layers of micropatterned MeTro gels seeded with heart muscles cells in different layers," said Ali Khademhosseini, PhD, BWH Division of Biomedical Engineering, co-senior study author. "As we continue to move forward with finding better ways to mend a broken heart, we hope the biomaterials we engineer will allow us to successfully address the limitations of current artificial tissues."
###
This research was supported by the National Institutes of Health (HL092836, DE019024, EB012597, AR057837, DE021468, HL099073, EB008392); National Health and Medical Research Council; CRC for Polymers; BHP-Billiton Fulbright Scholarship; National Science Foundation; Office of Naval Research Young National Investigator Award; Presidential Early Career Award for Scientists and Engineers; Australian Research Council; and Australian Defense Health Foundation and National Health and Medical Research Council.
Anthony Weiss, PhD, University of Sydney, co-senior study author is scientific founder of Elastagen Pty Ltd.
Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 3.5 million annual patient visits, is the largest birthing center in New England and employs more than 15,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, involving nearly 1,000 physician-investigators and renowned biomedical scientists and faculty supported by nearly $625 million in funding. BWH continually pushes the boundaries of medicine, including building on its legacy in organ transplantation by performing the first face transplants in the U.S. in 2011. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies, OurGenes and the Women's Health Initiative. For more information and resources, please visit BWH's online newsroom.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2013-04/bawh-ph042913.php
epidemiology total eclipse of the heart jionni lavalle earthquake san francisco donald payne elizabeth berkley lenny dykstra
No comments:
Post a Comment